Materi Ajar Kelas 6 B

 Senin, 27 Februari  2023

 TEMA 9 SUBTEMA 3 PEMBELAJARAN 5 dan 6

MUATAN TEMATIK VI. B
GURU KELAS : FITRI DARYANI,S.Pd

Good morning my student..,,,

Tabik pun ,,,!!

Apa kabar anak sholeh sholehah 6B,Alhamdulillah semoga kita semua dalam keadaan sehat dan selalu dalam lindungan Allah SWT Aamiin Ya Rabbal Alamin.

Sebelum belajar pastikan sudah sarapan, mendengarkan tausiah serta pahami  isinya, tadarus kemudian shalat dhuha. setelah selesai baru kalian membaca dan dipahami isi bloggers yang bu guru share hari ini.

Hari ini Senin, 27Februari 2023 kita akan belajar materi tentang tema 9 subtema 3 pembelajaran 5&6

Tema                     : 9(Menjelajah Angkasa Luar)

Subtema               : 3 (Tokoh Penjelajah Angkasa Luar)

Pembelajaran      : 5&6

Alat peraga          : ppt, rangkuman dan video










Berikut Rangkuman Tema 9


Setelah melihat rangkuman anak2 bisa melihat video pembelajaran di bawah ini ya


Demikian pembelajaran hari ini semoga anak Sholeh dan Sholehah dapat memahami materi hari ini


MUATAN MATEMATIKA 

Menentukan rata-rata (Mean), Modus dan Median

Pengertian dan Cara Mencari rata-rata (Mean), Modus dan Median

Modus adalah data yang paling banyak keluar atau muncul. Modus bisa juga berarti data dominan dalam sebuah kompulan data. 

contoh soal Mencari Modus

Diketahui tinggi badan siswa kelas 6 sebuah sekolah dasar sebagai berikut (dalam cm): 140, 135, 135, 130, 125, 130, 130, 150, 110, 115, 130, 135, 130, 140, 130. Tentukan modus dari data terebut!

Penyelesaian

Data Tinggi badan (dalam cm)
110 = 1 anak
115 = 1 anak
125 = 1 anak
130 = 6 anak
135 = 3 anak
140 = 2 anak
150 = 1 anak

Dari data siswa tersebut di atas dapat diketahui bahwa siswa paling banyak memiliki tinggi badan 130 cm. Jadi Modus data tersebut adalah 130 cm.

Pengertian dan Cara Mencari Median dengan Soal Latihan

Median adalah data tengah setelah data diurut. Dari pengertian median tersebut maka langkah awal dalam menentukan atau mencari median adalah dengan mengurutkan dari yang paling kecil atau sebaliknya mengurutkan dari yang paling besar.

Cara mencari median data ganjil 

Cara mencari median data ganjil bisa menggunakan rumus di bawah ini.
Median = (N+1)/2
Keterangan = N adalah banyak data
Dari rumus di atas maka cara mencari median dengan banyak data ditambah satu kemudian di bagi dua. Maka nilai yang diperoleh nilai tengah dari data yang sudah diurut. 
Contoh median data ganjil
Nilai Matematika siswa kelas 6 sebagai berikut: 70, 60, 80, 80, 70, 80, 75, 75, 90, 80, 100, 70, 80, 85, 70. 

Penyelesaian:

Data setelah diurut: 60, 70, 70, 70, 70, 75, 75, 80, 80, 80, 80, 80, 85, 90, 100
Banyak data = 15
Me = (N+1)/2
Me = (15+1)2
Me = 16/2
Me = 8
Data ke-8 adalah 80
Jadi median adalah data kedelapan yaitu 80.

Cara mencari median data genap

Cara mencari median data genap berbeda dengan data ganjil. Adapun untuk mencari median data genap bisa melihat rumus di bawah ini.
Me = ((N/2)+((N/2)+1)):2
Keterangan N = banyak data
Jadi berdasarkan rumus di atas, untuk mencari data tengah atau data pusat jika banyak data genap maka caranya jumlah data dibagi kedua ditambah jumlah data dibagi dua ditambah satu, kemudian dibagi dua. 
Misalnya jumlah data 20. Maka cara mediannya adalah 20/2 = 10. Jadi median adalah data ke 10 ditambah data ke 11 kemudian dibagi 2. Untuk lebih mudahnya bisa disimak contoh di bawah ini.
Contoh median data genap
Nilai Matematika siswa kelas 6 sebagai berikut: 70, 60, 80, 80, 70, 80, 75, 75, 90, 80, 100, 70, 80, 85, 70, 80. 
Penyelesaian:
Data setelah diurut: 60, 70, 70, 70, 70, 75, 75, 80, 80, 80, 80, 80, 80, 85, 90, 100
Jumlah data (N) = 16
Me =((N/2)+((N/2)+1)):2
Me = (16/2 + (16/2)+1):2
Me = (data ke 8 + data 9):2
Data ke 8 = 80
Data ke 9 = 80
Jadi Median data tersebut adalah (80+80)2 = 160/2
Median = 80

Pengertian dan Cara Menghitung Mean/Rata-rata dengan Soal Latihan

Mean atau Rata-rata adalah nilai wakil dari sejumlah bilangan atau data. Dari sekumpulan nilai atau data jika akan diambil salah satu untuk mewakili data tersebut maka akan diambil rata-rata. Mean atau rata-rata sendiri memiliki banyak pengertian, tergantung dari sisi mana akan menjelaskan.

Rata-rata = Jumlah data/banyak data

Dari rumus di atas sangat jelas bagaimana cara mencari rata-rata. Yaitu jumlah data dibagi dengan banyak data. Untuk lebih mudahnya bisa langsung menggunakannya dalam soal latihan di bawah ini.

Contoh soal latihan menghitung rata-rata

Nilai Matematika siswa kelas 6 sebagai berikut: 70, 60, 80, 80, 70, 80, 75, 75, 90, 80, 100, 70, 80, 85, 70, 80. Berapakah rata-rata nilai Matematika kelas 6?
Langkah Pertama adalah di jumlahkan semua data
Jumlah semua data= 1245
Jumlah data = 16
Rata-rata = Jumlah data/banyak data
Rata-rata = 1245/16
Rata-rata = 77,8125
Jika diambil 2 angka setelah koma maka hasilnya
Rata-rata = 77,81
 




Komentar

Postingan Populer